MATERI FISIKA DASAR

MATERI FISIKA DASAR

Hukum termodinamika
Hukum-hukum termodinamika pada prinsipnya menjelaskan peristiwa perpindahan panas dan kerja pada proses termodinamika. Sejak perumusannya, hukum-hukum ini telah menjadi salah satu hukum terpenting dalam fisika dan berbagai cabang ilmu lainnya yang berhubungan dengan termodinamika. Hukum-hukum ini sering dikaitkan dengan konsep-konsep yang jauh melampau hal-hal yang dinyatakan dalam kata-kata rumusannya.
Hukum  Termodinamika I

Apabila sistem gas menyerap kalor dari lingkungan sebesar Q1, maka oleh sistem mungkin akan diubah menjadi:
  1. usaha luar (W) dan perubahan energi dalam ( Δ U),
  2. energi dalam saja (U), dan
  3. usaha luar saja (W).

Hukum Thermodinamika II
Formulasi Kelvin-Planck atau hukum termodinamika kedua menyebutkan bahwa adalah tidak mungkin untuk membuat sebuah mesin kalor yang bekerja dalam suatu siklus yang semata-mata mengubah energi panas yang diperoleh dari suatu reservoir pada suhu tertentu seluruhnya menjadi usaha mekanik. Hukum kedua termodinamika mengatakan bahwa aliran kalor memiliki arah; dengan kata lain, tidak semua proses di alam semesta adalah reversible (dapat dibalikkan arahnya). Sebagai contoh jika seekor beruang kutub tertidur di atas salju, maka salju dibawah tubuh nya akan mencair karena kalor dari tubuh beruang tersebut. Akan tetapi beruang tersebut tidak dapat mengambil kalor dari salju tersebut untuk menghangatkan tubuhnya. Dengan demikian, aliran energi kalor memiliki arah, yaitu dari panas ke dingin. Satu aplikasi penting dari hukum kedua adalah studi tentang mesin kalor.

THEORI KINETIKA GAS
Teori Kinetik (atau teori kinetik pada gas) berupaya menjelaskan sifat-sifat makroscopik gas, seperti tekanan, suhu, atau volume, dengan memperhatikan komposisi molekular mereka dan gerakannya. Intinya, teori ini menyatakan bahwa tekanan tidaklah disebabkan oleh denyut-denyut statis di antara molekul-molekul, seperti yang diduga Isaac Newton, melainkan disebabkan oleh tumbukan antarmolekul yang bergerak pada kecepatan yang berbeda-beda. Teori Kinetik dikenal pula sebagai Teori Kinetik-Molekular atau Teori Tumbukan atau Teori Kinetik pada Gas.

Teori Kinetik dikenal pula sebagai Teori Kinetik-Molekular atau Teori
Tumbukan atau Teori Kinetik pada Gas. Dengan demikian, teroi kinetika gas membahas sifat-sifat gas yang berhubungan dengan gerakan translasi dari atom dan molekul dalam bentuk gas, serta menguji bagaimana sifat-sifat gas tersebut dapat dibahas berdasarkan pada gerakan translasi yang bebas dan kontinyu dari komponen-komponennya. Untuk dapat membahas sifat-sifat gas dengan lebih sempurna, maka dalam teori kinetika gas digunakan pendekatan gas ideal.

Teori ini didasarkan atas 3 pengandaian:
  1. Gas terdiri daripada molekul-molekul yang bergerak secara acak dan tanpa henti.
  2. Ukuran molekul-molekul dianggap terlalu kecil sehingga boleh diabaikan, maksudnya garis pusatnya lebih kecil daripada jarak purata yang dilaluinya antara perlanggaran.
  3. Molekul-molekul gas tidak berinteraksi antara satu sama lain. Perlanggaran sesama sendiri dan dengan dinding bekas adalah kenyal iaitu jumlah tenaga kinetik molekulnya sama sebelum dan sesudah perlanggaran.

Sifat-sifat Teori Kinetik Gas
Gas terdiri atas molekul –molekul yang bergerak menurut jalan-jalan yang lurus ke segala arah ,dengan kecepatan yang sangat tinggi .Molekul-molekul gas ini selalu bertumbukan dengan molekul-molekul yang lain atau dengan dinding bejana. Tumbukan terhadap dinding bejana ini  yang menyebabkan adanya tekanan.

Volume dari molekul –molekul gas sangat kecil bila dibandingkan dengan volume yang ditempati oleh gas tersebut ,sehingga sebenarnya banyak ruang yang kosong antara molekul –molekulnya. Hal ini yang menyebabkan gas mempuyai rapat yang lebih kecil dari pada cairan atau zat padat. Hal ini  juga yang menyebabkan gas bersifat kompresibel atau mudah ditekan.
Karena molekul –molekul gas selalu bergerak ke segala arah,maka gas yang satu mudah bercampur dengan gas yang lain (diffusi) ,asal keduanya  tidak bereaksi. Misalnya N2dan O2 ;CO2 dan H2; dan sebagainya.

Gelombang
Gelombang adalah getaran yang merambat. Bentuk ideal dari suatu gelombang akan mengikuti gerak sinusoide. Selain radiasi elektromagnetik, dan mungkin radiasi gravitasional, yang bisa berjalan lewat vakum, gelombang juga terdapat pada medium (yang karena perubahan bentuk dapat menghasilkan gaya memulihkan yang lentur) di mana mereka dapat berjalan dan dapat memindahkan energi dari satu tempat kepada lain tanpa mengakibatkan partikel medium berpindah secara permanen; yaitu tidak ada perpindahan secara masal.

Suatu medium disebut:
  1. linear jika gelombang yang berbeda di semua titik tertentu di medium bisa dijumlahkan,
  2. terbatas jika terbatas, selain itu disebut tak terbatas
  3. seragam jika ciri fisiknya tidak berubah pada titik yang berbeda
  4. isotropik jika ciri fisiknya "sama" pada arah yang berbeda

Dualitas gelombang-partikel
Dalam fisika dan kimia, dualitas gelombang-partikel menyatakan bahwa cahaya dan benda memperlihatkan sifat gelombang dan partikel. Konsep utama dalam mekanika kuantum, dualitas menyatakan kekurangan konsep konvensional seperti "partikel" dan "gelombang" untuk menjelaskan perilaku objek kuantum.
Ide awal dualitas berakar pada perdebatan tentang sifat cahaya dan benda sejak 1600-an, ketika teori cahaya yang saling bersaing yang diusulkan oleh Christiaan Huygens dan Isaac Newton.
Melalui hasil kerja Albert Einstein, Louis de Broglie dan lainnya, sekarang ini diterima bahwa seluruh objek memiliki sifat gelombang dan partikel (meskipun fenomena ini hanya dapat terdeteksi dalam skala kecil, seperti atom)
Pengertian Atom & molekul
Atom adalah: Satuan terkecil dari suatu materi yang terdiri atas inti, yang biasanya mengandung proton (muatan+) dan neutron (netral), dan kulit yang berisi muatan negatif yaitu elektron. Ada juga yang menyebutkan bahwa atom adalah partikel penyusun unsur.
Molekul adalah: Gabungan dari beberapa atom unsur, bisa dua atau lebih. Artinya ketika berbicara molekul maka yang dibayangkan adalah gabungan atom2 (bukan 1 atom). Molekul adalah partikel terkecil dari suatu unsur/senyawa

PERKEMBANGAN MODEL ATOM
Istilah atom bermula dari zaman  Leukipos dan Demokritus yang mengatakan bahwa benda yang paling kecil adalah atom. Atom yang berasal dari bahasa Yunani yaitu atomos, a artinya tidak dan  tomos artinya dibagi. Model atom mengalami perkembangan seiring dengan perkembangan ilmu pengetahuan dan berdasarkan fakta-fakta eksperimen. Walaupun model atom telah mengalami modifikasi, namun gagasan utama dari model atom tersebut tetap diterima sampai sekarang. Perkembangan model atom dari model atom Dalton sampai model atom mekanika kuantum yaitu sebagai berikut:

Model atom Dalton
Pada tahum 1803, John Dalton mengemukakan teorinya sebagai berikut:
  1. setiap unsur tersusun atas partikel-partikel kecil yang tidak dapat dibagi lagi yang disebut atom.
  2. atom-atom dari unsur yang sama akan mempunyai sifat yang sama, tetapi atom-atom dari unsur berbeda mempunyai sifat yang berbeda pula.
  3. dalam reaksi kimia tidak ada atom yang hilang, tetapi hanya terjadi perubahan susunan atom-atom dalam unsur tersebut.
  4. bila atom membentuk molekul, atom-atom tersebut bergabung dengan angka perbandingan yang bulat dansederhana, seperti 1 : 1,  2 : 1 , 2 : 3.

Model atom Dalton mempunyai beberapa kelemahan. Beberapa kelemahan itu diantaranya
  1. Tidak dapat menjelaskan sifat listrik materi
  2. Tidak dapat menjelaskan gaya gabung unsur-unsur. Misalnya, mengapa dalam pembentukan air (H2O) satu atom oksigen mengikat dua atom hydrogen.

Model atom Thomson
Setelah J.J. Thomson menemukan bahwa di dalam atom terdapat elektron, maka Thomson membuat model atom sebagai berikut:
1.    Atom merupakan suatu materi berbentuk bola pejal bermuatan positif  dan di dalamnya tersebar elektron-elektron  (model roti kismis).
2.    Atom bersifat netral, jumlah muatan positif sama dengan jumlah muatan negatif.
Model atom Thomson tidak bertahan lama. Hal ini disebabkan karena model atom Thomson tidak menjelaskan adanya inti atom.

Model atom Rutherford
Setelah Rutherford menemukan inti atom yang bermuatan positif dan massa atomnya terpusat pada inti, maka Rutherford membuat model atom sebagai berikut:
1.    atom terdiri atas inti atom yang bermuatan positif dan elektron yang bermuatan negatif mengelilingi inti atom;
2.    atom bersifat netral;
3.    jari-jari inti atom dan jari-jari atom sudah dapat ditentukan.
Dengan berkembangnya ilmu pengetahuan alam, ternyata model Rutherford juga memiliki kekurangan. Kelemahan mendasar dari model atom Rutherford ialah tidak dapat menjelaskan mengapa elektron yang beredar mengelilingi inti tidak jatuh ke inti karena ada gaya tarik menarik antara inti dan elektron. Dan menurut ahli fisika klasik pada massa itu (teori Maxwell), elektron yang bergerak mengelilingi inti atom akan melepaskan energi dalam bentuk radiasi.

Model atom Bohr
Berdasarkan hasil pengamatannya pada spektrum atom hidrogen, Neils Bohr memperbaiki model atom Rutherford, dengan menyusun model atom sebagai berikut:
1.    Atom terdiri atas inti atom yang mengandung proton bermuatan positif dan elektron bermuatan negatif yang mengelilingi inti atom; Ruang hampa  Elektron mengelilingi inti Inti atom (bermuatan positif).
Model atom mekanika kuantum
Model atom mekanika kuantum didasarkan pada:
1.    elektron bersifat gelombang dan partikel, oleh Louis de Broglie (1923);
2.    persamaan gelombang elektron dalam atom, oleh Erwin Schrodinger; (1926)
3.    asas ketidakpastian, oleh Werner Heisenberg (1927).
Menurut teori atom mekanika kuantum, elektron tidak bergerak pada lintasan tertentu. Berdasarkan hal tersebut maka model atom mekanika kuantum adalah sebagai berikut:
1.    Atom terdiri atas inti atom yang mengandung proton dan neutron, dan elektron-elektron mengelilingi inti atom berada pada orbital-orbital tertentu yang membentukkulit atom,  hal ini disebut dengan konsep orbital.
2.    Dengan memadukan asas ketidakpastian dari Werner Heisenberg dan mekanika gelombang dari Louis de Broglie, Erwin Schrodinger merumuskan konsep orbital sebagai  suatu ruang tempat peluang elektron dapat ditemukan.
3.    Kedudukan elektron pada orbital-orbitalnya dinyatakan dengan bilangan kuantum.

Radioaktif

Pengertian Radioaktif

    Radioaktif adalah  kesimpulan beragam proses di mana sebuah inti atom yang tidak stabil memancarkan partikel subatomik (partikel radiasi). Peluruhan terjadi pada sebuah nukleus induk dan menghasilkan sebuah nukleus anak. Ini adalah sebuah proses acak sehingga sulit untuk memprediksi peluruhan sebuah atom. Satuan internasional (SI) untuk pengukuran peluruhan radioaktif adalah becquerel (Bq). Zat radioaktif dan radioisotop berperan besar dalam ilmu kedokteran yaitu untuk mendeteksi berbagai penyakit, diagnosa penyakit yang penting antara lain tumor ganas. Kemajuan teknologi dengan ditemukannya zat radioaktif dan radioisotop memudahkan aktifitas manusia dalam berbagai bidang kehidupan.
   
Manfaat radioaktif dalam teknologi dan kehidupan sehari hari

Penggunaan zat-zat radioaktif merupakan bagian dari teknologi nuklir yang relatif cepat dirasakan manfaatnya oleh masyarakat. Hal ini disebabkan zat-zat radioaktif mempunyai sifat-sifat yang spesifik, yang tidak dimiliki oleh unusr-unusr lain. Dengan memanfaatkan sifat-sifat radioaktif tersebut, maka banyak persoalan yang rumit yang dapat disederhanakan sehingga penyelesaiannya menjadi lebih mudah.

Salah satu sifat dari radioaktif yaitu mampu untuk menembus benda padat. Sifat ini banyak digunakan dalam teknik radiografi yaitu pemotretan bagian dalam suatu benda dengan menggunakan radiasi nuklir seperti sinar-x, sinar gamma dan neutron. Hasil pemotretan tersebut direkam dalam film sinar-x.

Radioaktif merupakan kumpulan beberapa tipe partikel subatom, biasanya disebut sinar gamma, neutron, elektron, dan partikel alpha. radioaktif itu bersifat melaju melalui celah/rongga ruang dengan kecepatan tinggi, yaitu sekitar 100,000 mili persekon. tentunya Radioaktif dengan mudah bisa masuk ke tubuh dan merusak sel alami yang telah disusun tubuh. Ini bisa menyebabkan sel kanker yang mematikan didalam tubuh kita, dan jika mengenai bagian reproduksi, bisa merusak generasi manusia.

SUMBER RADIASI
Berdasarkan asalnya sumber radiasi pengion dapat dibedakan menjadi dua yaitu sumber radiasi alam yang sudah ada di alam ini sejak terbentuknya, dan sumber radiasi buatan yang sengaja dibuat oleh manusia untuk berbagai tujuan.
Sumber Radiasi Alam
Radiasi yang dipancarkan oleh sumber radiasi alam disebut juga sebagai radiasi latar belakang. Radiasi ini setiap harinya memajan manusia dan merupakan radiasi terbesar yang diterima oleh manusia yang tidak bekerja di tempat yang menggunakan radioaktif atau yang tidak menerima radiasi berkaitan dengan kedokteran atau kesehatan. Radiasi latar belakang yang diterima oleh seseorang dapat berasal dari tiga sumber utama yaitu :

1. Sumber radiasi kosmis
Radiasi kosmis berasal dari angkasa luar, sebagian berasal dari ruang antar bintang dan matahari. Radiasi ini terdiri dari partikel dan sinar yang berenergi tinggi dan berinteraksi dengan inti atom stabil di atmosfir membentuk inti radioaktif seperti Carbon -14, Helium-3, Natrium -22, dan Be-7. Atmosfir bumi dapat mengurangi radiasi kosmik yang diterima oleh manusia. Tingkat radiasi dari sumber kosmik ini bergantung kepada ketinggian, yaitu radiasi yang diterima akan semakin besar apabila posisinya semakin tinggi. Tingkat radiasi yang diterima seseorang juga tergantung pada letak geografisnya.

2. Sumber radiasi terestrial
Radiasi terestrial secara natural dipancarkan oleh radionuklida di dalam kerak bumi. Radiasi ini dipancarkan oleh radionuklida yang disebut primordial yang ada sejak terbentuknya bumi. Radionuklida yang ada dalam kerak bumi terutama adalah deret Uranium, yaitu peluruhan berantai mulai dari Uranium-238, Plumbum-206, deret Actinium (U-235, Pb-207) dan deret Thorium (Th-232, Pb-208).
Radiasi teresterial terbesar yang diterima manusia berasal dari Radon (R-222) dan Thoron (Ra-220) karena dua radionuklida ini berbentuk gas sehingga bisa menyebar kemana-mana.
Tingkat radiasi yang diterima seseorang dari radiasi teresterial ini berbeda-beda dari satu tempat ke tempat lain bergantung pada konsentrasi sumber radiasi di dalam kerak bumi. Beberapa tempat di bumi yang memiliki tingkat radiasi diatas rata-rata misalnya Pocos de Caldas dan Guarapari di Brazil, Kerala dan Tamil Nadu di India, dan Ramsar di Iran.
3. Sumber radiasi internal yang berasal dari dalam tubuh sendiri
Sumber radiasi ini ada di dalam tubuh manusia sejak dilahirkan, dan bisa juga masuk ke dalam tubuh melalui makanan, minuman, pernafasan, atau luka. Radiasi internal ini terutama diterima dari radionuklida C-14, H-3, K-40, Radon, selain itu masih ada sumber lain seperti Pb-210, Po-210, yang banyak berasal dari ikan dan kerang-kerangan. Buah-buahan biasanya mengandung unsur K-40.
Sumber Radiasi Buatan
Sumber radiasi buatan telah diproduksi sejak abad ke 20, dengan ditemuk-annya sinar-X oleh WC Rontgen. Saat ini sudah banyak sekali jenis dari sumber radiasi buatan baik yang berupa zat radioaktif dan sumber pembangkit radiasi (pesawat sinar-X dan akselerator).
Radioaktif dapat dibuat oleh manusia berdasarkan reaksi inti antara nuklida yang tidak radioaktif dengan neutron atau biasa disebut sebagai reaksi fisi di dalam reactor atom. Radionuklida buatan ini bisa memancarkan radiasi alpha, beta, gamma dan neutron.
Sumber pembangkit radiasi yang lazim dipakai yakni pesawat sinar-X dan akselerator. Proses terbentuknya sinar-X adalah sebagai akibat adanya arus listrik pada filamen yang dapat menghasilkan awan elektron di dalam tabung hampa. Sinar-X akan terbentuk ketika berkas elektron ditumbukan pada bahan target.




Contact Us

Name

Email *

Message *

Back To Top